Feasibility study of CO₂ absorption process using ionic liquid as solvent

Amiri Nesrine¹, Benyounes Hassiba¹ and Touaibia Ines¹

¹Université des sciences et de la technologie d'Oran USTO-MB, Faculté de chimie, département de Génie chimique, Oran, Algérie.

jch@emp.mdn.dz

Abstract. Ionic liquids (ILs) have shown great interest to be used as liquid absorbents for CO₂ capture because of advantages such as non-volatility potentially that makes ILs "green" solvents. ILs would not contaminate the atmosphere, even in small amounts; they have high CO₂ solubility and low energy requirements for regeneration.

In this work, CO_2 separation process using the ionic liquid 1-hexyl-3-methylimidazolium tetracyanoborate ([hmim][TCB]) as physical solvent was investigated to substituting organic solvent dimethyl ether of polyethelene glycol (DEPG) called "Selexol" by simulation using Aspen plus V.8.0. The vapor-liquid equilibria of CO_2 and CH_4 in presence of [hmim][TCB] was modeled with the NRTL activity coefficient model, and the binary interaction parameters of CO_2 + [hmim][TCB] and CH_4 +[hmim][TCB] were fitted to the experimental data. Results show that [hmim][TCB] ionic liquid could be an excellent alternative to conventional solvents for CO_2 separation, especially for gas streams with low and moderate acid gas content. New design of the regeneration system has been proposed to improve solvent regeneration.

Keywords: CO₂ Capture, Ionic liquid, Physical absorption.